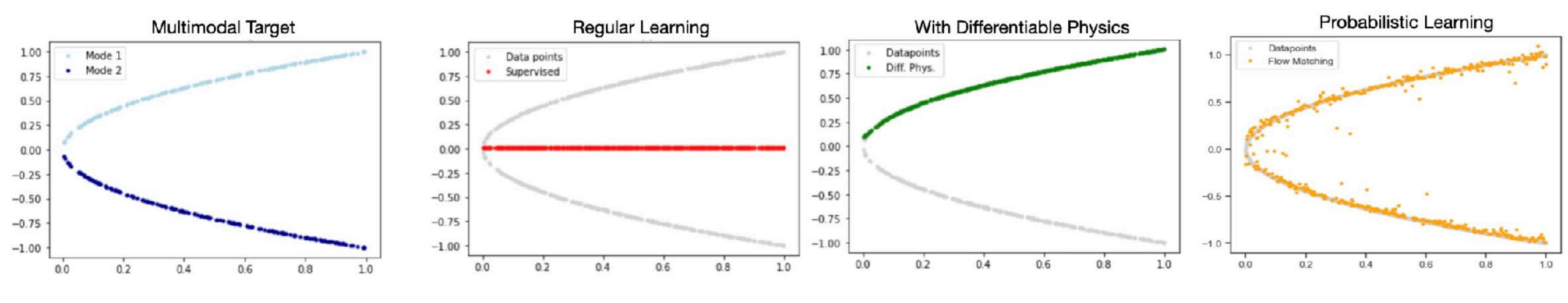


ADVANCED DEEP LEARNING FOR PHYSICS

Teaser Example from PBDL

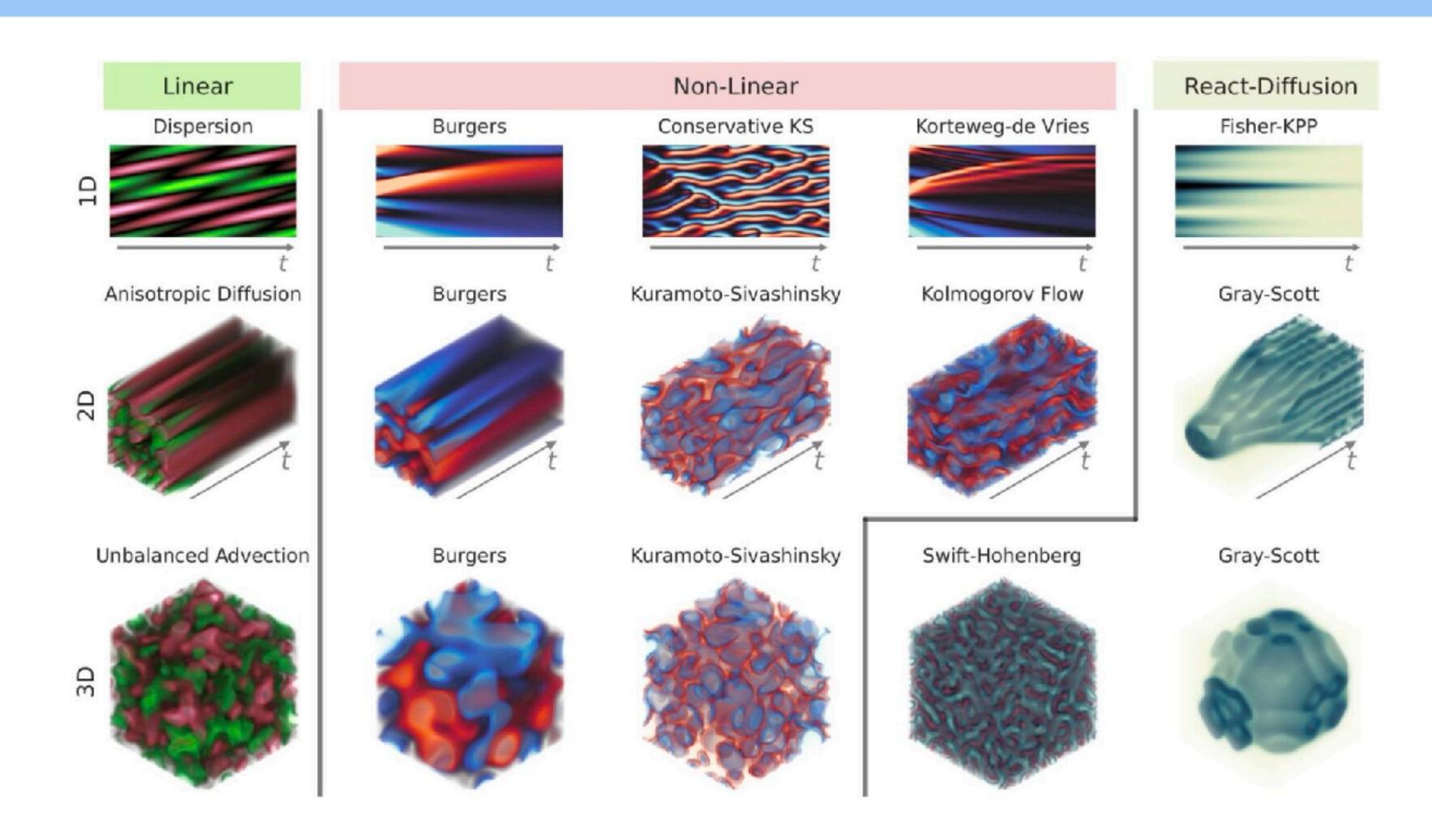
- DL extremely powerful...
- ... but sometimes surprisingly wrong. Solve map: $y^2 \rightarrow x$



https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/intro-teaser.ipynb

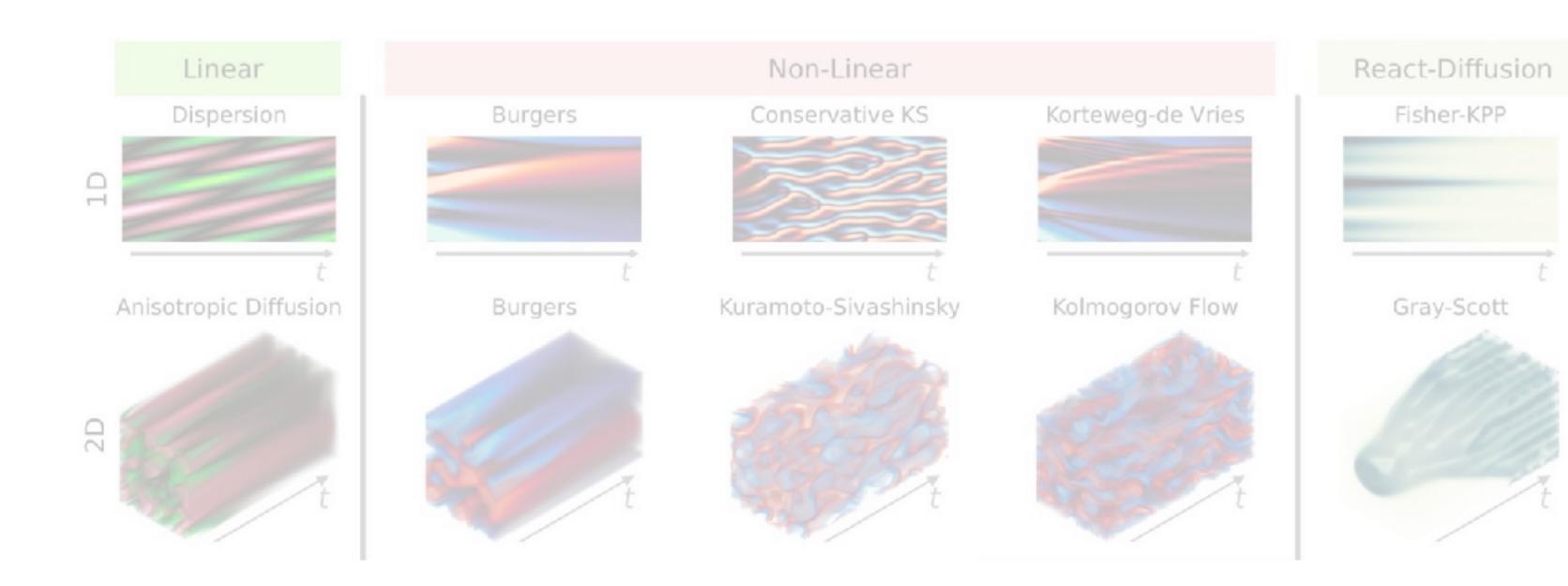
Basic PDEs

- Diffusion
- Burgers
- Navier-Stokes



Basic PDEs

- Diffusion
- Burgers
- Navier-Stokes

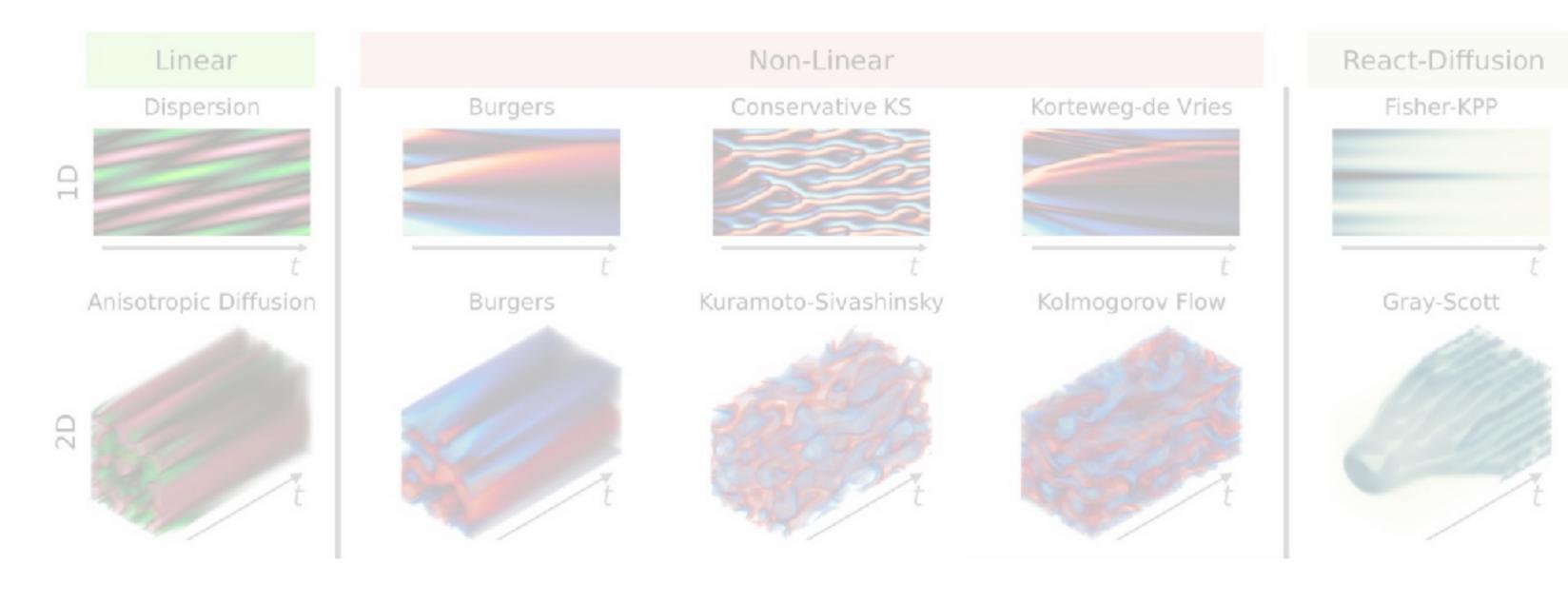


$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

Diffusion constant α

Basic PDEs

- Diffusion
- Burgers (in 2D)
- Navier-Stokes

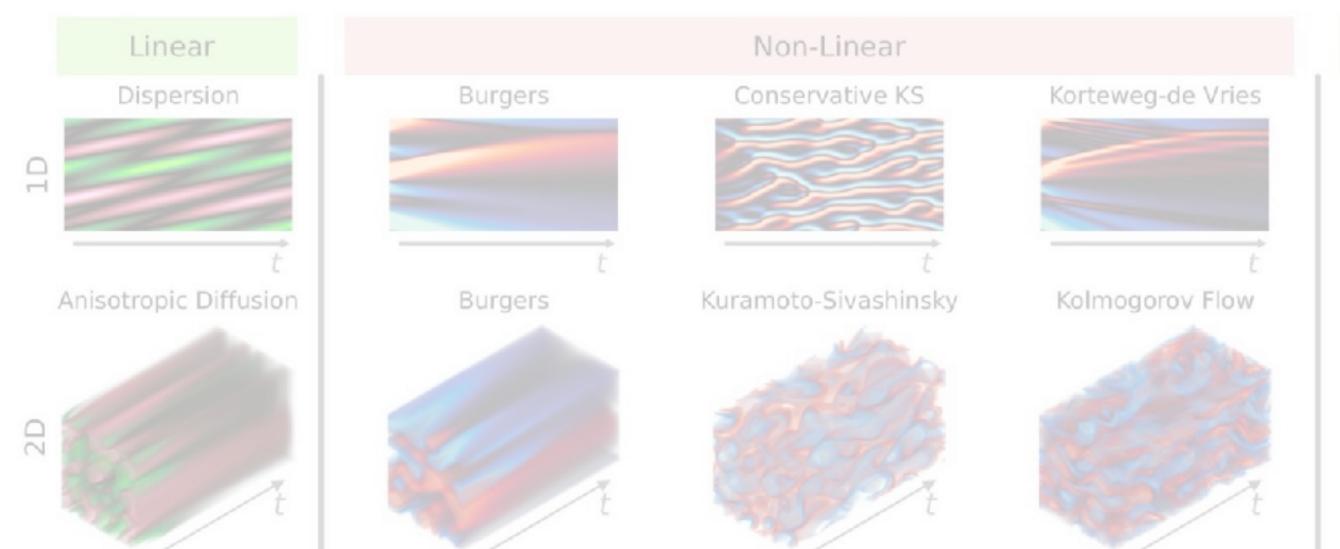


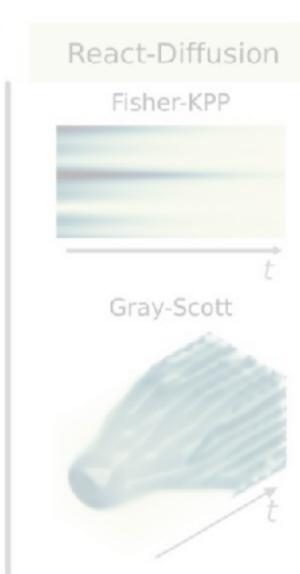
$$\frac{\partial u_x}{\partial t} + \mathbf{u} \cdot \nabla u_x = \nu \nabla \cdot \nabla u_x$$
$$\frac{\partial u_y}{\partial t} + \mathbf{u} \cdot \nabla u_y = \nu \nabla \cdot \nabla u_y$$

Kinematic Viscosity u

Basic PDEs

- Diffusion
- Burgers
- Navier-Stokes (2D)



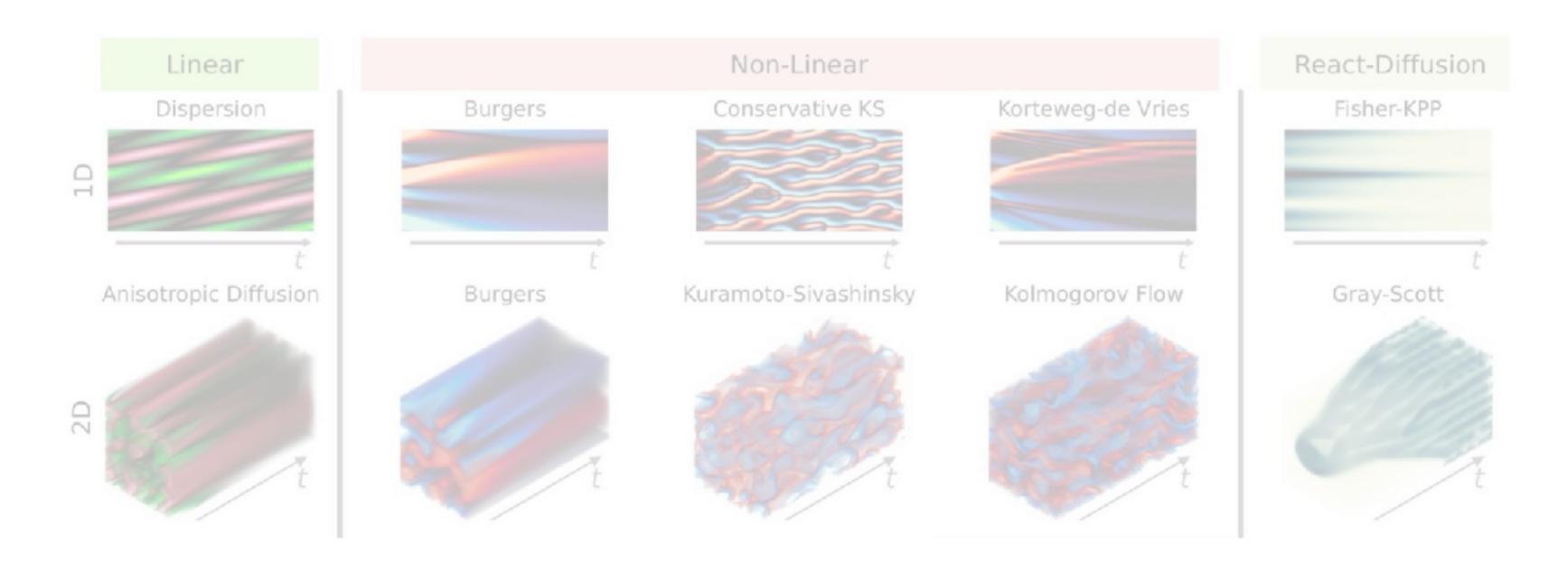


$$\frac{\partial u_x}{\partial t} + \mathbf{u} \cdot \nabla u_x = -\frac{1}{\rho} \nabla p + \nu \nabla \cdot \nabla u_x + g_x$$
$$\frac{\partial u_y}{\partial t} + \mathbf{u} \cdot \nabla u_y = -\frac{1}{\rho} \nabla p + \nu \nabla \cdot \nabla u_y + g_y$$

s.t.
$$\nabla \cdot \mathbf{u} = 0$$

Basic PDEs

- Diffusion
- Burgers
- Navier-Stokes (2D)



Distinguish forward and inverse problems

Forward: initial & boundary conditions, solve from time t_0 to end time

Inverse: from data/observations solve for state (e.g., $\mathbf{u}(t_0)$) or parameter (e.g., viscosity ν)

Supervised Learning - The Basics

Notation

Deep Learning Basics

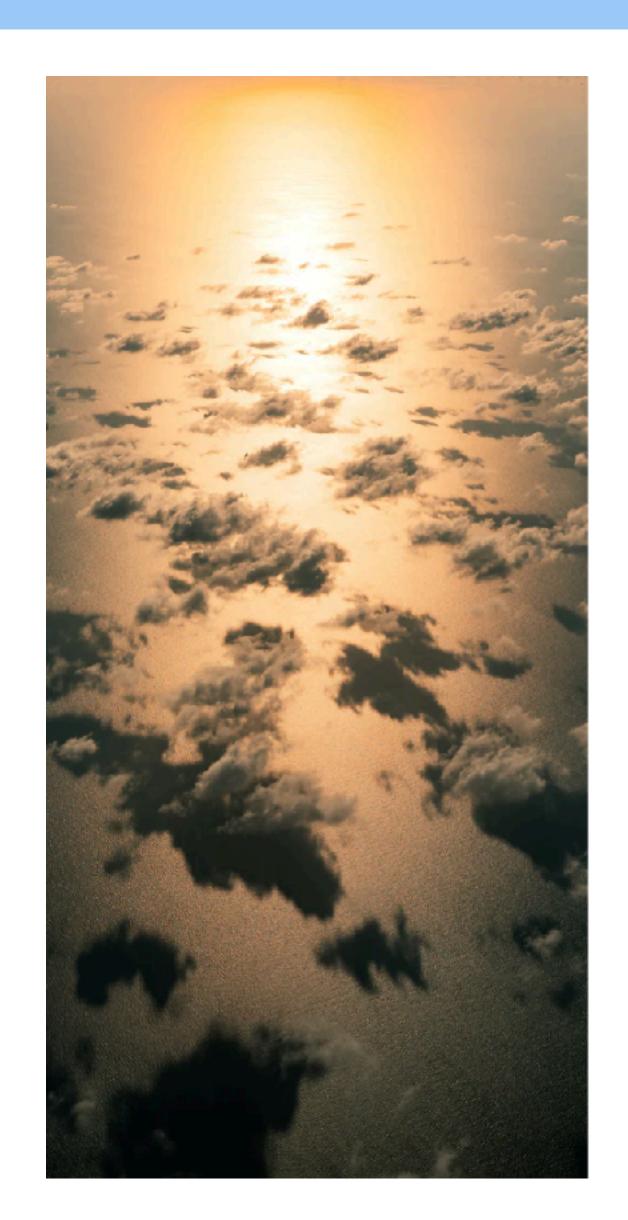
- Approximate unknown function $f^*(x) = y^*$
- Star super-script * denotes ground truth (often intractable)
- Find approximation f(x) over training data set with (x_i, y_i^*) pairs
- Minimizing error e(x, y)
- In the simplest case L^2 : $\arg\min_{\theta}|f(x;\theta)-y^*|_2^2$
- Solve non-linear minimization problem with gradient based optimizer (Adam)

Types of Machine Learning

Traditional Viewpoints

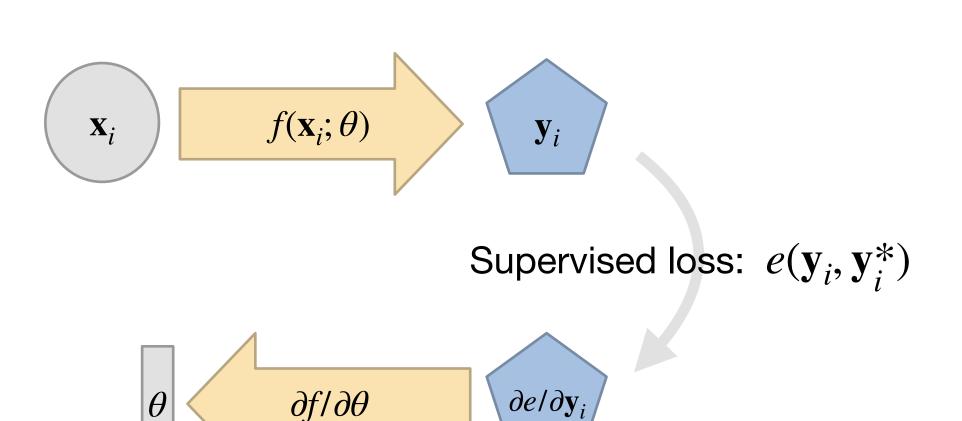
- Traditional ML distinction: classification VS regression
 - In the following: regression, f(x) = y, with x, y continuous functions
- Later on *physics regression* $\mathcal{P}(f(x)) = y$:

 physical model \mathcal{P} combined with regression problem;
 typically involves highly non-linear functions that cause uneven scaling



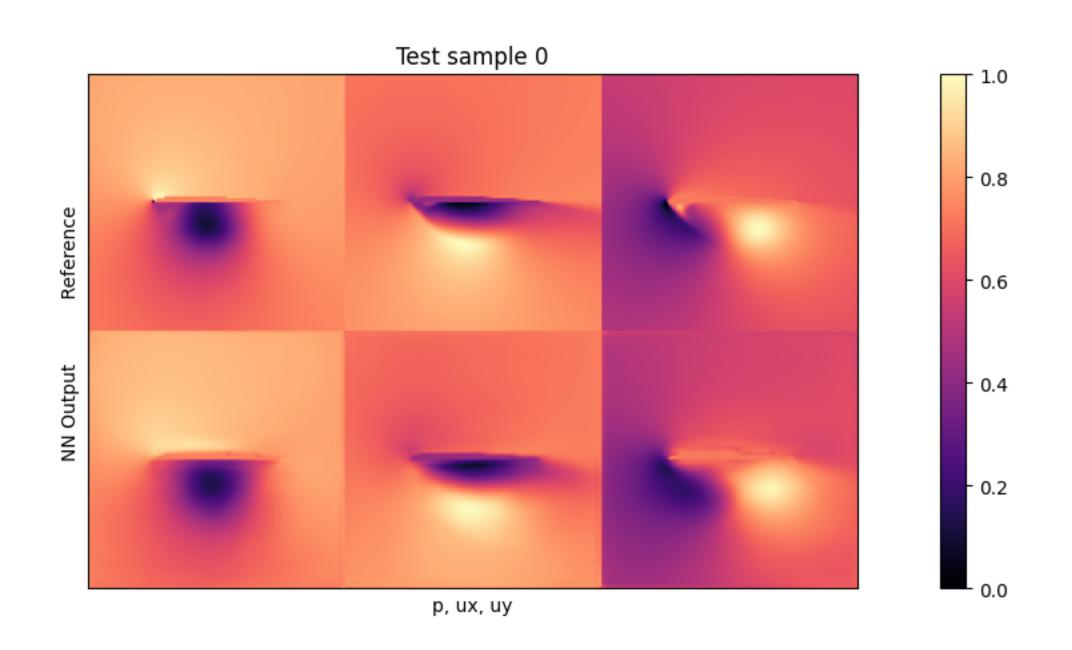
Re-cap Supervised Training

- Definition Supervised Training := purely data-driven, pre-computed x, y, with simple loss (e.g. L^2)
- Fully data-driven
 - Physical model not taken into account
 - Sub-optimal accuracy and generalization
- Exactly as before: $\arg\min_{\theta}|f(x;\theta)-y^*|_2^2$



- Beautiful from an ML perspective: no "inductive biases" needed
- Which Horrible from a computational perspective: no existing knowledge used

Supervised Training



https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/supervised-airfoils.ipynb

Supervised Training for Time Integration

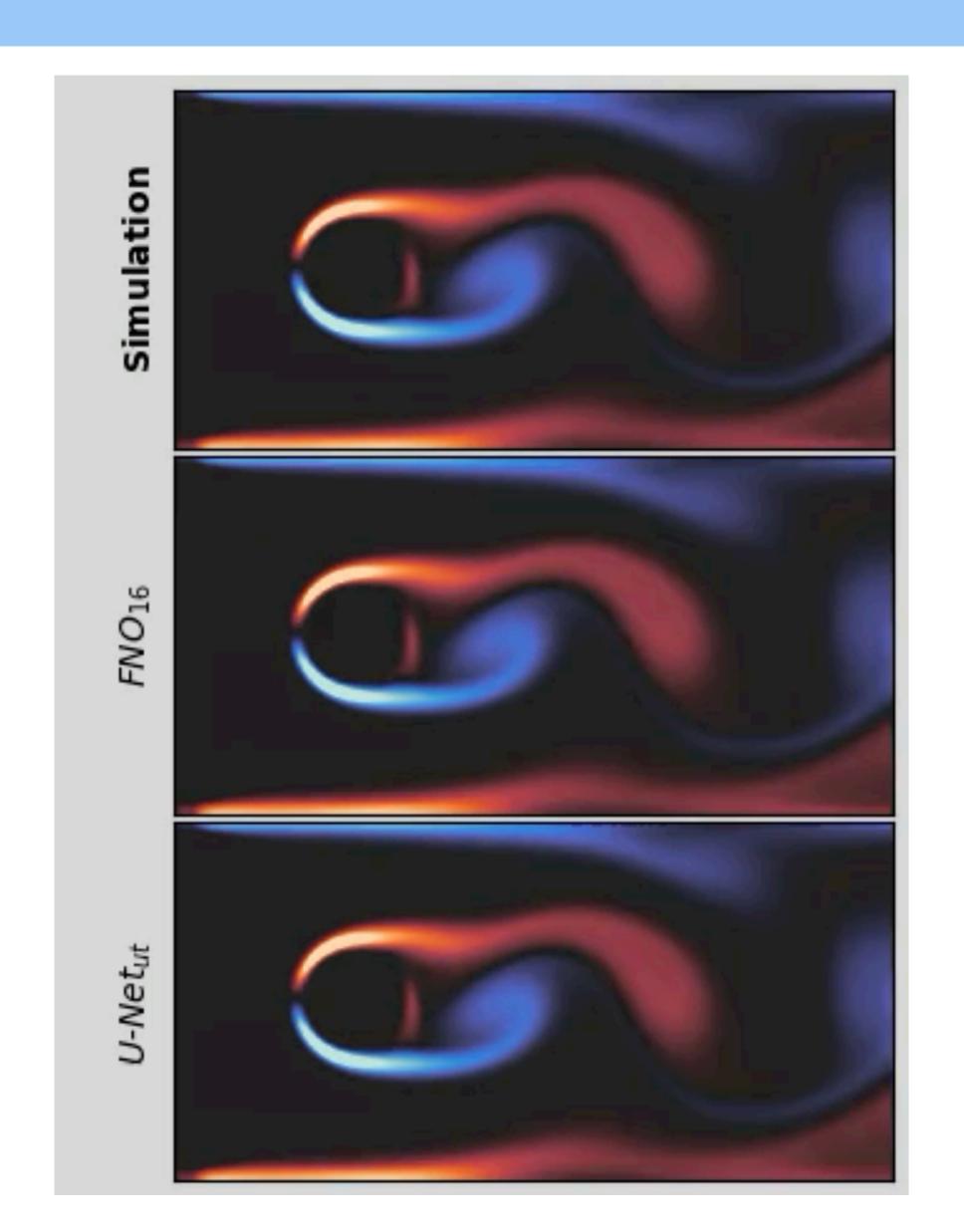
- Precompute time series data: given states over time $[u^0, u^1, \dots, u^N]$
- Consider batches representing a single time step forward $x := u^t$; $y^* = u^{t+1}$
- Then, just like before: $\arg\min_{\theta}|f(x;\theta)-y^*|_2^2$
- Given u^0 approximate any state u^i by i recurrent / autoregressive evaluations of $f(\cdot)$

Recurrent Evaluation

- Per step approximation errors will grow; dynamical systems perspective: reference states u^* evolves on attractor of PDE \mathscr{P} , with $u^*_{t+1} = \mathscr{P}(u^*_t)$; $u^*_{t>t_0} \in A_{\mathscr{P}}$
- Attractor of NN f doesn't match the one from \mathscr{P} : $u_{t+1} = f(u_t)$; $A_f \neq A_{\mathscr{P}}$
- Classic "data shift" problem from ML, causes instabilities!

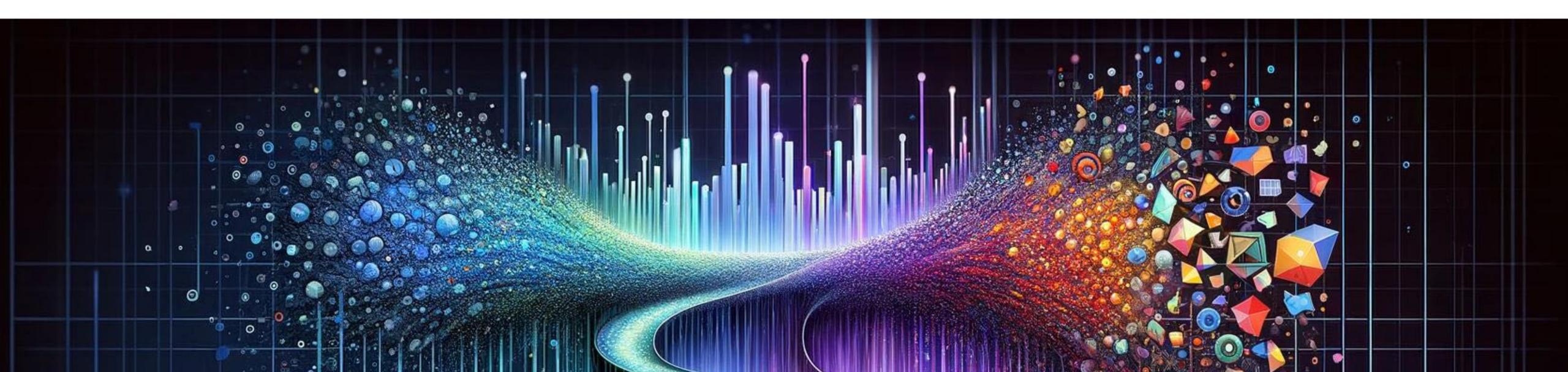
Growing Errors - Example

- Simple Navier Stokes "wake flow"
- Here: all models are quite good
- "Drift" from G.T. is very slow
- (Not shown: eventual complete blow up)



Outlook

- Obvious fix: include time evolution in training to improve attractor, ideally include solver
- Train with unrolling, more details later on...



Supervised Training

Best Practices

- Always start here
- Always start with overfitting 1 data point
- Always check number of NN parameters
- Always adjust hyper parameters at this stage
- ... then slowly introduce more data and beautiful physics models

Supervised Training

Best Practices

- ✓ fast, reliable (builds on established DL methods)
- Great starting point
- X Sub-optimal performance, accuracy and generalization.
- X Fundamental problems in multi-modal settings
- Requires precomputed data (data shift problem)

ADVANCED DEEP LEARNING FOR PHYSICS

Lectures / Exercises

- Ex1: Phiflow done
- Ex2: First "real" one coming up
- Feedback session again on Monday
- Lecture slides updated just now
- Links to be fixed

Supervised Training

Best Practices

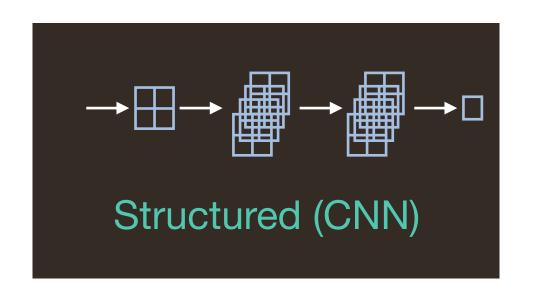
- Always start here
- Always start with overfitting 1 data point
- Always check number of NN parameters
- Always adjust hyper parameters at this stage
- ... then slowly introduce more data and beautiful physics models

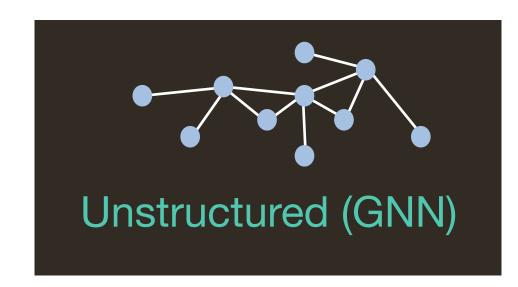
ADVANCED DEEP LEARNING FOR PHYSICS

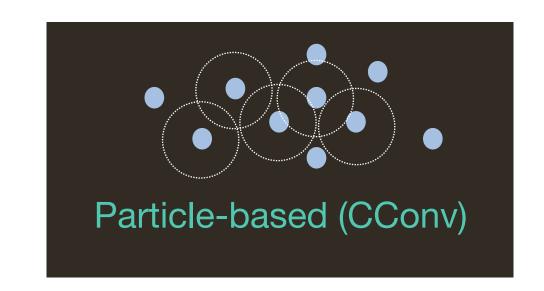
Neural Network Architectures

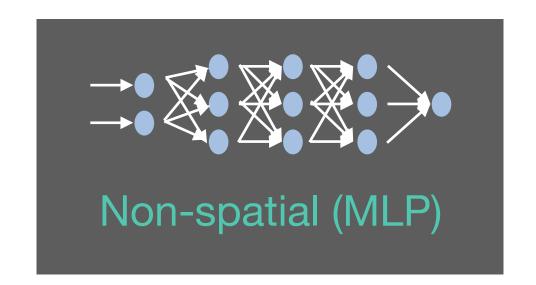
Overview

Categorization









- Regular spacing on a grid (structured)
- Irregular arrangement (unstructured)
- Irregular positions without connectivity (particles)
- [No spatial arrangement at all]

Overview

Receptive Fields **••**

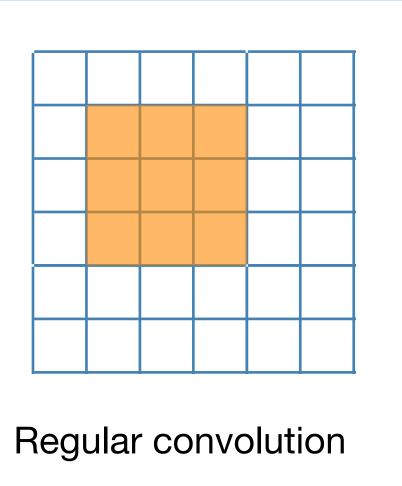
- Distinguish Local vs Global interactions
- Similar to hyperbolic PDEs (e.g. waves) and parabolic/elliptic PDEs (e.g. heat)
- No surprise: capabilities of NN should match requirements of PDE... 😳
- MLPs: trivially global, but scale badly with $\mathcal{O}(N^2)$

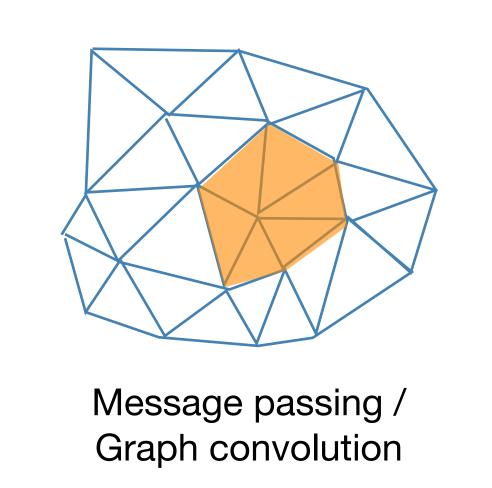
Convolutions & Message Passing

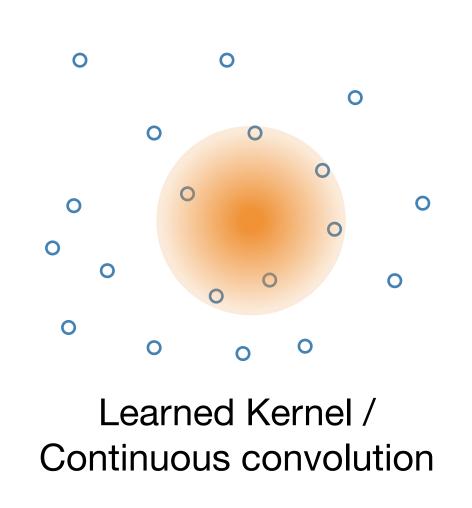
Inherently Local

• Grids, graphs, particles

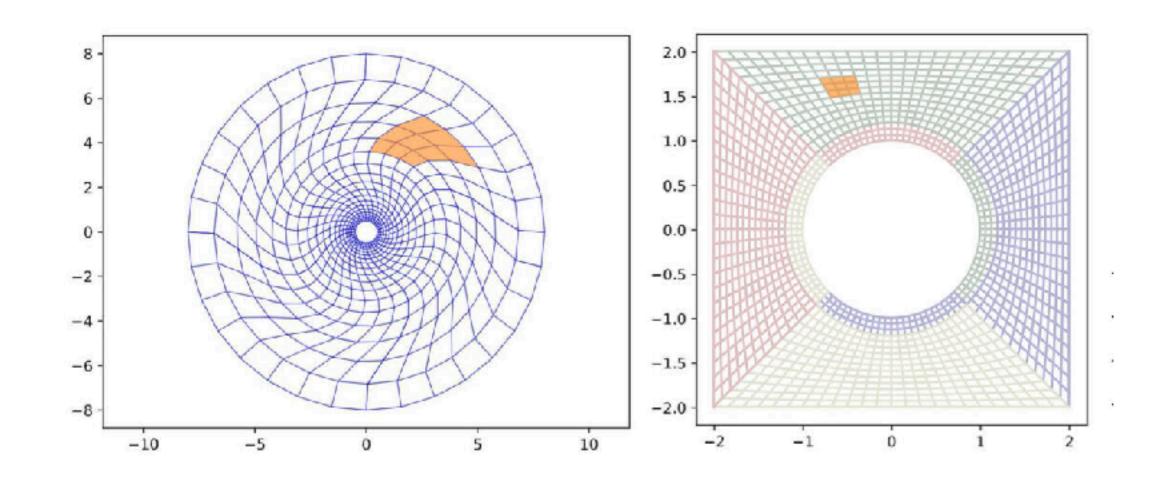
Stencil operations







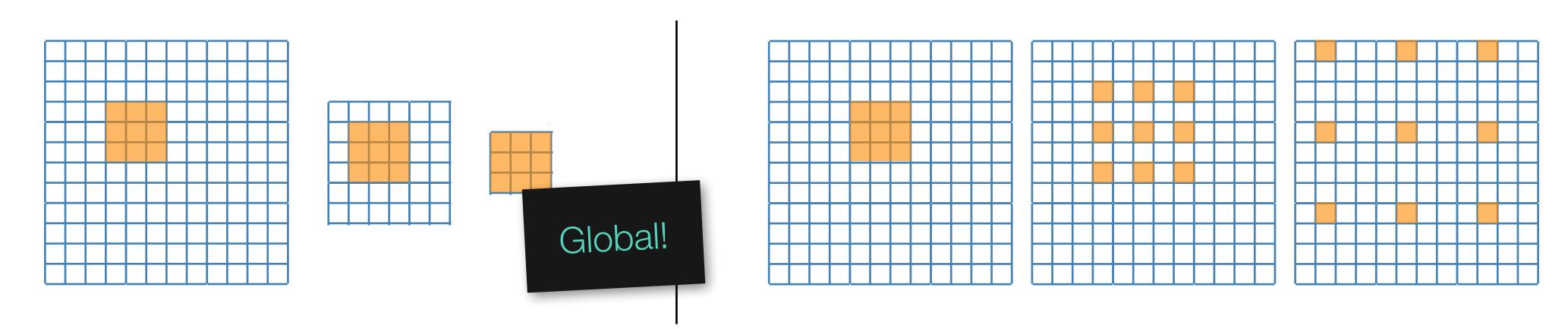
- Inductive bias on grids (simplifies implementation), same concepts on graphs
- Can be non-trivial



Receptive Fields

Larger Receptive Fields

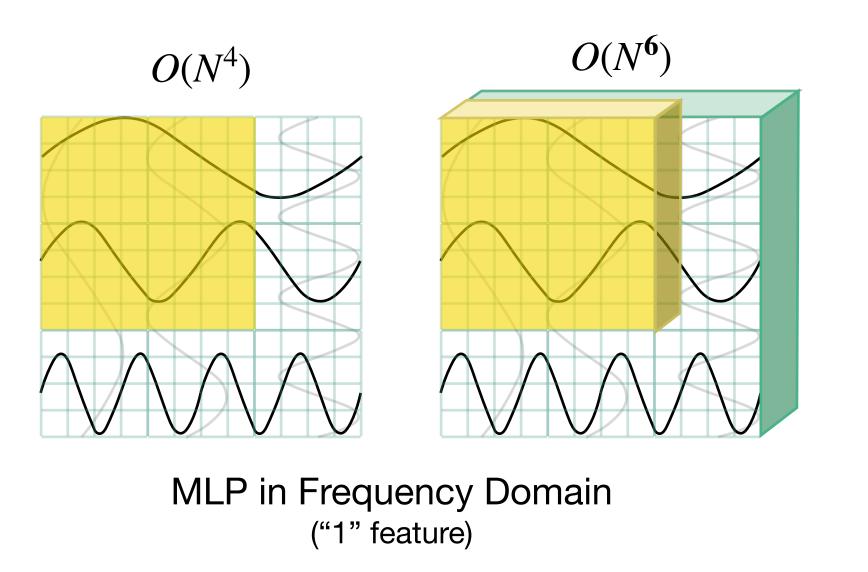
- Hierarchy via Pooling (similar to restriction / prolongation of multigrid)
- Graphs require clustering step (ideally as preprocessing)
- Grid-based variant dilation: larger receptive field, but less aggregation

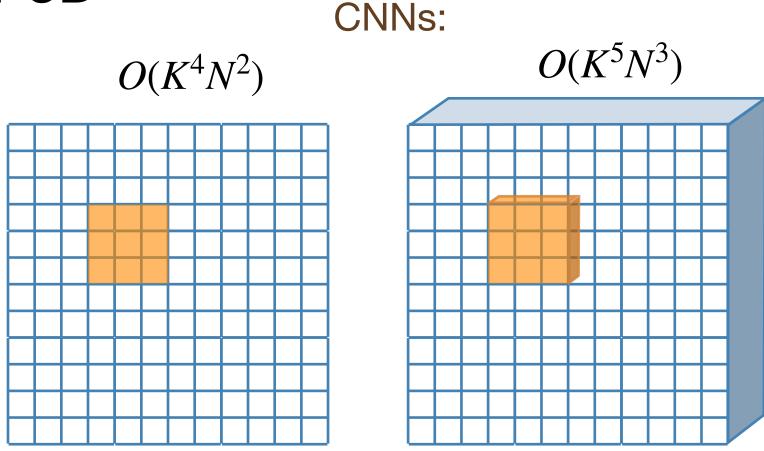


Receptive Fields

Spectral Representations

- Employ Fourier transforms (e.g., Fourier Neural Operators)
- Note on operator perspective: function transformation, "infinite dimensional";
 in practice grids-based, truncated and discrete not too different from CNN
- But: global basis functions from FFT; suboptimal scaling for 3D





Convolutions in Spatial Domain (kernel size K; assuming feature dimension O(K), not shown)

Receptive Fields

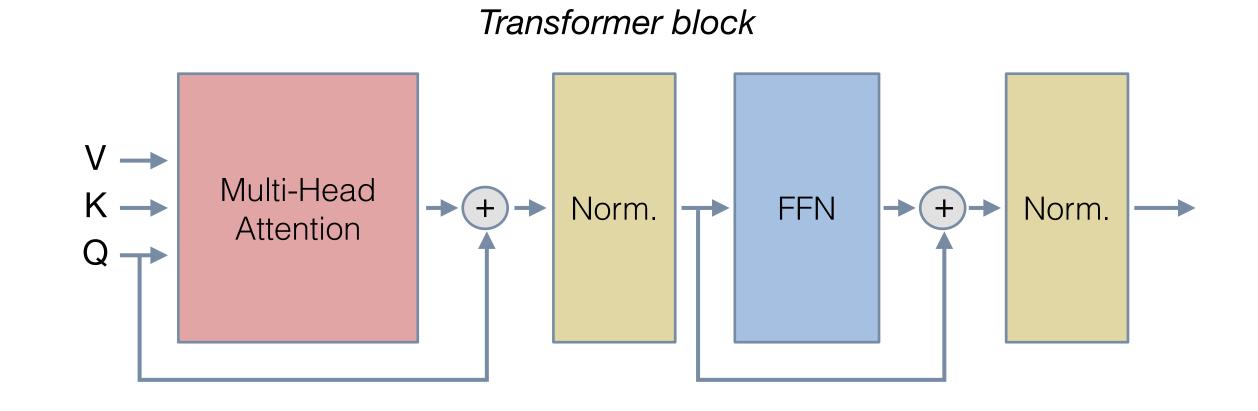
Summary Global vs Local

	Details to follow!		
	Grid	Unstructured	Points
Local	CNN , ResNet	GNN	CConv
Global			
- Hierarchy	U-Net, Dilation	Multi-scale GNN	Multi-scale CConv
- Spectral	FNO	Spectral GNN	(-)

Overview

Transformers

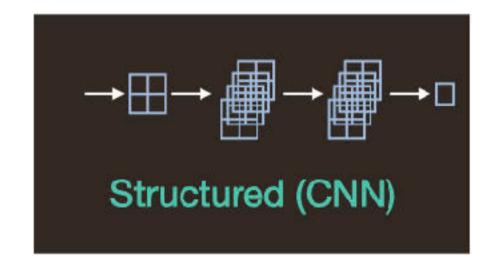
- Sequence-to-sequence architecture, token processing
- Attention yields "global" receptive field on token level
- Details out of scope...
- Great scaling (compute), less ideal for memory (attention is quadratic)
- "The Future" !?

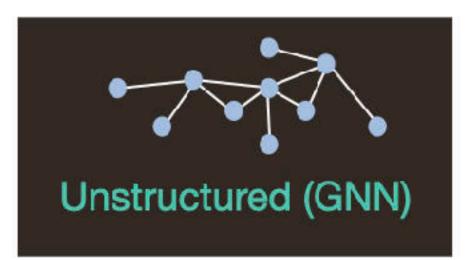


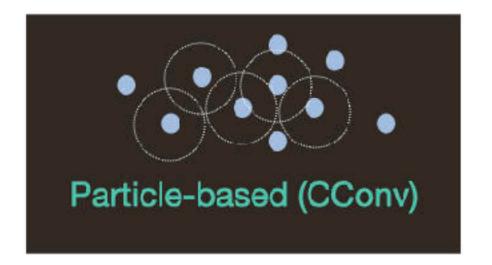
Neural Network Architectures

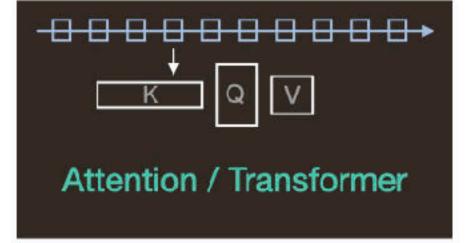
Summary

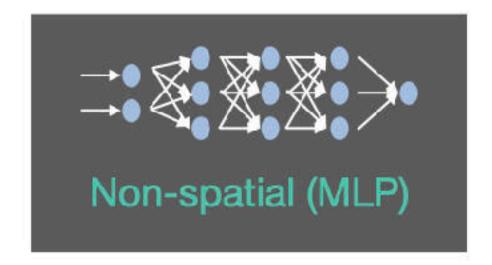
- Central consideration: local vs. global
- Grids or graphs: physics-concepts apply in the same way
- Transformers: likewise grids and graphs...











End